設想這樣一個場景:孫悟空在飛行過程中完成了一次變化(這里假設他變成了一只鳥),但這個變化并不是像西游記拍攝中有煙霧效果完成的,而就是通過身體結構發(fā)生漸變來完成的,這種情況下,檢測器應該會在后續(xù)的檢測任務中失敗,因為設計好的檢測器只是為了檢測目標孫悟空的存在,孫悟空變身之后已經(jīng)不存在這個目標,檢測器是不會有火眼金睛繼續(xù)檢測到變化后的孫悟空的。但是,對于跟蹤設備就不一樣了,跟蹤目標,哪怕目標在跟蹤過程中發(fā)生了巨大變化,這些都是跟蹤設備的本質能力。理想的跟蹤設備應該可以很好的跟上孫悟空漸變的整個過程,并且可以繼續(xù)后面變身之后對鳥的跟蹤。RK3588作為慧視光電開發(fā)的全國產化工業(yè)級板卡,具備高性能、高精度的優(yōu)點。青海目標跟蹤工程
YOLO算法的關鍵技術在YOLO算法中,有幾個關鍵技術對其性能起著重要作用。首先是使用卷積神經(jīng)網(wǎng)絡提取圖像特征,其中引入了一些先進的網(wǎng)絡結構,如Darknet。其次是使用AnchorBox來提高目標定位的精度。此外,YOLO算法還引入了特征金字塔網(wǎng)絡和多尺度預測等技術,以處理不同大小的目標。YOLO算法在實時目標檢測和跟蹤中的應用YOLO算法在實時目標檢測和跟蹤領域取得了明顯的成果。它不僅在檢測速度上遠超傳統(tǒng)方法,而且在目標定位和類別預測準確性上也表現(xiàn)出色。因此,YOLO算法在許多應用中得到了廣泛應用,如視頻監(jiān)控、自動駕駛和物體識別等。質量目標跟蹤功效工程師以RK3399PRO核心板為基礎進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。
很多跟蹤方法都是對通用目標的跟蹤,沒有目標的類別先驗。在實際應用中,還有一個重要的跟蹤是特定物體的跟蹤,比如人臉跟蹤、手勢跟蹤和人體跟蹤等。特定物體的跟蹤與前面介紹的方法不同,它更多地依賴對物體訓練特定的檢測器。人臉跟蹤由于它的明顯特征,它的跟蹤就主要由檢測來實現(xiàn),比如早期的Viola-Jones檢測框架和當前利用深度學習的人臉檢測或人臉特征點檢測模型。手勢跟蹤在應用主要集中在跟蹤特定的手型,比如跟蹤手掌或者拳頭。設定特定的手型可以方便地訓練手掌或拳頭的檢測器。
用檢測器模型去解決跟蹤問題,遇到的比較大問題是訓練數(shù)據(jù)不足。普通的檢測任務中,因為檢測物體的類別是已知的,可以收集大量數(shù)據(jù)來訓練。例如 VOC、COCO 等檢測數(shù)據(jù)集,都有著上萬張圖片用于訓練。而如果我們將跟蹤視為一個特殊的檢測任務,檢測物體的類別是由用戶在首先幀的時候所指定的。這意味著能夠用來訓練的數(shù)據(jù)只是只是只有少數(shù)幾張圖片。這給檢測器帶來了很大的障礙。而慧視光電定制的目標跟蹤算法可以有效的解決這個問題,通過AI自動圖像標注平臺SpeedDP的大量模型部署訓練,能夠有效解決數(shù)據(jù)訓練不足的問題。Viztra-LE034圖像處理板識別概率超過85%。
視頻監(jiān)控中的多目標跟蹤(MTT)是一項重要而富有挑戰(zhàn)性的任務,由于其在各個領域的潛在應用而引起了研究人員的大量關注。多目標跟蹤任務需要在每幀中單獨定位目標,這仍然是一個巨大的挑戰(zhàn),因為目標的外觀會立即發(fā)生變化,并且會出現(xiàn)極端的遮擋。除此之外,多目標跟蹤框架需要執(zhí)行多個任務,即目標檢測、軌跡估計、幀間關聯(lián)和重新識別。多目標跟蹤分為目標檢測和跟蹤兩個主要任務。為了區(qū)分組內對象,MTT算法將ID與在特定時間內保持特定于該對象的每個檢測到的對象相關聯(lián)。然后利用這些ID來生成被跟蹤對象的運動軌跡?;垡暪怆妼K3588跟蹤板進行二次開發(fā),實現(xiàn)AI智能應用。江蘇如何目標跟蹤
RV1126圖像處理板是我司自主研發(fā)的目標跟蹤板,該板卡采用國產高性能CPU,搭載自研目標跟蹤及跟蹤算法。青海目標跟蹤工程
視頻自動跟蹤系統(tǒng),一般都是用在露天的、較大地域范圍的監(jiān)控系統(tǒng)中,且邊跟蹤邊錄像。在自動跟蹤系統(tǒng)的發(fā)展上,jun用上的視頻自動跟蹤、毫米波雷達跟蹤以及激光雷達跟蹤等是比較成熟的;非jun用領域,存在一些固定畫面、攝像機從不運動的的目標檢測與跟蹤系統(tǒng);基于帶紅外線的、常用在演播室或者會議室的、很近距離的跟蹤系統(tǒng),目前主要局限于簡單背景(如室內環(huán)境下)、大目標(即目標在視頻圖像中占較大區(qū)域),而且一般無法實現(xiàn)控制攝像機轉動來對目標進行跟蹤。青海目標跟蹤工程